10,071 research outputs found

    Designing III-V Multijunction Solar Cells on Silicon

    Full text link
    Single junction Si solar cells dominate photovoltaics but are close to their efficiency limits. This paper presents ideal limiting efficiencies for tandem and triple junction multijunction solar cells subject only to the constraint of the Si bandgap and therefore recommending optimum cell structures departing from the single junction ideal. The use of III-V materials is considered, using a novel growth method capable of yielding low defect density III-V layers on Si. In order to evaluate the real potential of these proposed multijunction designs, a quantitative model is presented, the strength of which is the joint modelling of external quantum efficiency and current-voltage characteristics using the same parameters. The method yields a single parameter fit in terms of the Shockley-Read-Hall lifetime. This model is validated by fitting experimental data of external quantum efficiency, dark current, and conversion efficiency of world record tandem and triple junction cells under terrestrial solar spectra without concentration. We apply this quantitative model to the design of tandem and triple junction solar cells, yielding cell designs capable of reaching efficiencies without concentration of 32% for the best tandem cell and 36% for the best triple junction cell. This demonstrates that efficiencies within a few percent of world records are realistically achievable without the use of concentrating optics, with growth methods being developed for multijunction cells combining III-V and Si materials.Comment: Preprint of the paper submitted to the journal Progress in Photovoltaics, selected by the Executive Committee of the 28th EU PVSEC 2013 for submission to Progress in Photovoltaics. 10 pages, 7 figure

    Real-time pair-feeding of animals

    Get PDF
    Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag

    Automatic real-time pair-feeding system for animals

    Get PDF
    A pair feeding method and apparatus are provided for experimental animals wherein the amount of food consumed is immediately delivered to a normal or control animal so that there is a qualitative, quantitative and chronological correctness in the pair feeding of the two animals. This feeding mechanism delivers precisely measured amounts of food to a feeder. Circuitry is provided between master and slave feeders so that there is virtually no chance of a malfunction of the feeding apparatus, causing erratic results. Recording equipment is also provided so that an hourly record is kept of food delivery

    Simultaneous Multicolor Detection of Faint Galaxies in the Hubble Deep Field

    Get PDF
    We present a novel way to detect objects when multiband images are available. Typically, object detection is performed in one of the available bands or on a somewhat arbitrarily co-added image. Our technique provides an almost optimal way to use all the color information available. We build up a composite image of the N passbands where each pixel value corresponds to the probability that the given pixel is just sky. By knowing the probability distribution of sky pixels (a chi-square distribution with N degrees of freedom), the data can be used to derive the distribution of pixels dominated by object flux. From the two distributions an optimal segmentation threshold can be determined. Clipping the probability image at this threshold yields a mask, where pixels unlikely to be sky are tagged. After using a standard connected-pixel criterion, the regions of this mask define the detected objects. Applying this technique to the Hubble Deep Field data, we find that we can extend the detection limit of the data below that possible using linearly co-added images. We also discuss possible ways of enhancing object detection probabilities for certain well defined classes of objects by using various optimized linear combinations of the pixel fluxes (optimal subspace filtering).Comment: 8 pages, 5 figures (4 postscript, 1 JPEG). To be published in A

    Multiscale approaches to high efficiency photovoltaics

    Full text link
    While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (french ANR project MULTISOLSI). Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software which is widely known. Yet a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action MultiscaleSolar kicking off in early 2015 which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.Comment: Draft paper accompanying a plenary presentation to the World Renewable Energy Conference WREC 2015, June 2015, Bucharest. In press (IOP

    The Statistical Approach to Quantifying Galaxy Evolution

    Get PDF
    Studies of the distribution and evolution of galaxies are of fundamental importance to modern cosmology; these studies, however, are hampered by the complexity of the competing effects of spectral and density evolution. Constructing a spectroscopic sample that is able to unambiguously disentangle these processes is currently excessively prohibitive due to the observational requirements. This paper extends and applies an alternative approach that relies on statistical estimates for both distance (z) and spectral type to a deep multi-band dataset that was obtained for this exact purpose. These statistical estimates are extracted directly from the photometric data by capitalizing on the inherent relationships between flux, redshift, and spectral type. These relationships are encapsulated in the empirical photometric redshift relation which we extend to z ~ 1.2, with an intrinsic dispersion of dz = 0.06. We also develop realistic estimates for the photometric redshift error for individual objects, and introduce the utilization of the galaxy ensemble as a tool for quantifying both a cosmological parameter and its measured error. We present deep, multi-band, optical number counts as a demonstration of the integrity of our sample. Using the photometric redshift and the corresponding redshift error, we can divide our data into different redshift intervals and spectral types. As an example application, we present the number redshift distribution as a function of spectral type.Comment: 40 pages (LaTex), 21 Figures, requires aasms4.sty; Accepted by the Astrophysical Journa

    Reconstructing Galaxy Spectral Energy Distributions from Broadband Photometry

    Get PDF
    We present a novel approach to photometric redshifts, one that merges the advantages of both the template fitting and empirical fitting algorithms, without any of their disadvantages. This technique derives a set of templates, describing the spectral energy distributions of galaxies, from a catalog with both multicolor photometry and spectroscopic redshifts. The algorithm is essentially using the shapes of the templates as the fitting parameters. From simulated multicolor data we show that for a small training set of galaxies we can reconstruct robustly the underlying spectral energy distributions even in the presence of substantial errors in the photometric observations. We apply these techniques to the multicolor and spectroscopic observations of the Hubble Deep Field building a set of template spectra that reproduced the observed galaxy colors to better than 10%. Finally we demonstrate that these improved spectral energy distributions lead to a photometric-redshift relation for the Hubble Deep Field that is more accurate than standard template-based approaches.Comment: 23 pages, 8 figures, LaTeX AASTeX, accepted for publication in A

    Accounting for the Decline in AFDC Caseloads: Welfare Reform or Economic Growth?

    Get PDF
    Nationwide, AFDC caseloads have decreased by about 18 percent since March 1994, while some states, such as Wisconsin, Indiana, and Oregon, have seen declines of 40 percent or more. Two factors are frequently suggested as possible causes: state-level experiments with welfare reform and strong economic growth. In this paper, we use state-level monthly panel data from 1987 to 1996 to assess the importance of each of these factors by estimating a model of AFDC caseloads as a dynamic function of time-dependent state welfare reform variables (welfare waivers) and economic variables such as per capita employment. Our results from the dynamic model suggest that the decline in per capita AFDC caseloads is attributable largely to the economic growth of states and not to waivers from federal welfare policies. In the 26 states experiencing at least a 20 percent decline in per capita AFDC caseloads between 1993 and 1996, we attribute 78 percent of the decline to business-cycle factors and 6 percent to welfare waivers.
    • 

    corecore